Write in exponential form.

1. $\log _{4} x=\frac{1}{2}$
2. $\ln 7.39 \approx 2$

Write in logarithmic form.
3. $e^{4} \approx 54.6$
4. $9^{3}=729$

Solve using log properties or solving exponent rules.
5. $81^{x}=729^{x-2}$
6. $\left(\frac{1}{343}\right)=49^{x+3}$
7. $9^{x}=31.2$
8. $4 e^{3 x}-11=5$
9. $8 \log _{5} 2=\log _{5} 64 x$
10. $\log _{2} 4 x-\log _{2} 5=4$
11. $\ln 14+\ln x=3$
12. $8^{7 x}=2$
13. $\log _{7} 4+2 \log _{7} x=\log _{7} 196$
14. $4^{x+6}=14^{8 x}$
15. $\ln (2 x-1)=5$
16. $\ln (x-2)-\ln 4=\ln 3$
17. $4^{x-5}=77$
18. $e^{2 x-7}+4=9$
19. $\log _{6} 3 x=2$
20. $2^{5-x}=9^{x+1}$

Identify as exponential growth or decay and then make a rough sketch of the graph.
21. $y=2\left(\frac{1}{4}\right)^{x}$

Growth or Decay?


Formulas:

$$
y=a(1 \pm r)^{t}
$$

Exponential Growth or Decay
$y=a(1 \pm r)^{t}$
Exponential Growth or Decay
22. $y=\frac{1}{2}(6)^{x}$

Growth or Decay?

23. $y=\frac{5}{2}\left(\frac{2}{5}\right)^{x}$

Growth or Decay?


| $y=P e^{r t}$ |
| :---: |
| Compound Continuously |

$$
y=P\left(1+\frac{r}{n}\right)^{n t}
$$

Compound any other way
24. You buy a new car for $\$ 22,500$. The value of the car decreases by $25 \%$ each year.
a. What is the value of the car after three years?
b. In approximately how many years is the car worth $\$ 5300$ ?

Formulas:
$y=a(1 \pm r)^{t}$
Exponential Growth or Decay

$$
\begin{aligned}
& \qquad y=P e^{r t} \\
& \text { Compound Continuously }
\end{aligned}
$$

$$
y=P\left(1+\frac{r}{n}\right)^{n t}
$$

Compound any other way
25. Gasoline costs $\$ 2.15$ per gallon. The price per gallon increases an average of $4.5 \%$ per year.
a. What would be the approximate price after 2 years?
b. If this trend continues, how many years before gas prices reach $\$ 3$ per gallon?
26. You deposited $\$ 4600$ in an account that earns $2.6 \%$ annual interest. Find the balance after 5 years if the interest is compounded:
a. continuously
b. quarterly
c. Approximate the number of years it would take for your balance to reach $\$ 6800$ if the account is compounded continuously.
d. Approximate the number of years it would take for your balance to double if the account is compounded every 6 months.

