Statistics is a collection of methods for planning experiments, obtaining data, and then organizing, presenting, analyzing, interpreting, and drawing conclusions based on the data.

Definitions

- A <u>population</u> is the complete collection of all elements (scores, people, measurements, and so on) to be studied.
- A <u>sample</u> is a sub-collection of elements drawn from the population.
- A <u>parameter</u> is a numerical measurement describing some characteristic of a population.
- A <u>statistic</u> is a numerical measurement describing some characteristic of a sample.
- In an <u>observational study</u>, we observe and measure specific characteristics, but we don't attempt to manipulate or modify the subjects being studied.
- In an <u>experiment</u>, we apply some treatment and then proceed to observe its effects on the subjects.

Determine whether each of the following is an observational study or an experiment.

- 1. Different brands of cigarettes are measured for tar, nicotine, and carbon monoxide.
- 2. People who smoke are asked to halve the number of cigarettes consumed each day so that any effect on pulse rate can be measured. ______
- 3. In a PE class, the effect of exercise on blood pressure is studied by requiring that half of the students walk a mile each day while the other students run a mile each day. _____
- 4. The relationship between weights of bears and their lengths is studied by measuring bears that have been anesthetized. ______

<u>Measures of Central Tendency</u>

• A measure of central tendency is a value at the center or middle of a data set.

Mean											
The arithmetic mean of a set of scores is the value											
obtained by adding the scores and dividing the total by the											
number of scores.											
Referred to as "mean"											
$\succ \bar{x} = \frac{\sum x}{n}$											
Pronounced "x-bar"											
the mean of all values in a <u>sample</u>											
• Σ : represents the total or summation of the scores											
 x: is the variable used to represent the individual 											
data values											
 n: represents the number of values in a sample 											
$\succ \mu = \frac{\sum x}{N}$											
the mean of all values in a <u>population</u>											

N: represents the number of values in a population

Example:

A. Listed below are the times (in years) that the first ten presidents survived after inauguration. Find the mean for this sample.

 $10 \quad 29 \quad 26 \quad 28 \quad 15 \quad 23 \quad 17 \quad 25 \quad 0 \quad 20$

Median

The median of a set of scores is the middle value when the scores are arranged in order of increasing (or decreasing) magnitude.

 $\succ \tilde{x}$

- Pronounced "x-tilde"
- To find the median:

- Arrange the scores in order (increasing or decreasing)
 - If the number of scores is odd, the median if the number that is located in the exact middle of the list.
 - If the number of scores is even, the median is found by computing the mean of the two middle numbers.

Example:

a. The following values are the incomes (in thousands of dollars) that performers received for one rock concert. Find the median.

500 60 80 50000 1000 400

Mode

- > The mode of a data set is the score that occurs most frequently.
- ➤ M

 \geq

- Represents mode
- When two scores occur with the same greatest frequency, each one is a mode and the data set is bimodal.
- When more than two scores occur with the same greatest frequency, each is a mode and the data set is said to be multimodal.
- > When no score is repeated, we say that there is no mode.
- > To find the mode:
 - Arrange the scores in order (increasing or decreasing)
 - Determine which score(s) has the greatest frequency

Example:

b. Find the mode(s) of each data set.

1.	5	5	5	3	1	5	1	4	3	5	5		
2.	1	2	2	2	3	4	5	6	6	7	7	7	9
3.	1	2	3	6	7	8	9	10					

The Best Measure of Central Tendency

		Comparis	on of Mean, M	edian, and Mo	ode	
Average	Definition	How Common?	Existence	Takes Every Score into Account?	Affected by Extreme Scores?	Advantages and Disadvantages
Mean	$\bar{x} = \frac{\sum x}{n}$	Most familiar "average"	Always exists	Yes	Yes	
Median	ĩ	Commonly used	Always exists	No	No	
Mode	М	Sometimes used	May not exist or may be more than one mode	No	No	

Which is the best measure of central tendency for each situation?

Determining the "average" cost of a house in a particular area _______

Determining the "average" eye color in the school ______

Determining the "average" test score ______

Practice:

For questions 1-2 find the mean, median, and mode.

1.	 The ages (in years) of students taking a Calculus III class in college. 					2.	Dig	its s	sele	cteo	d in	the	lov	va F	Pick	Thr	ee	lotte	ery:							
												1	6	8	6	9	5	2	1	5	0	3	9	9	0	7
	17	20	21	18	20	20	20	18	19	19																
	20	19	21	20	18	20	20	19	18	19																

Practice:

For questions 3 find the mean, median, and mode of each sample, and then compare the two sets of results.

3. Samples of the ages (in years) of student cars and faculty/staff cars at a particular college.

Students	10	4	5	2	9	7	8	8	16	4	13	12
Faculty/Staff	7	10	4	13	23	2	7	6	6	3	9	4

a. Mr. Clark decides to trade in his 23 year old car and buy a brand new car. How does this effect the results?

Unit 4 1.1

Outlier

• A value that "lies outside" (is much smaller or larger than) most of the other values in the set of data.

								0	ut	lier	
0	+• 1	2	3	• •	• 5	6	7	8	9	+> 10	

Example #1: 25, 29, 3, 32, 85, 33, 27, 28 Outlier(s): _____

How do Outliers affect the measures of central tendency?

Example #2: A new coach has been working with the long jump team this month, and the athletes' performance has changed. Here are the results:

Athlete	Augustus	Tom	June	Carol	Bob	Sam
Result	+0.15m	+0.11m	+0.06m	+0.05m	+0.12m	-0.56m

Find the mean of the data set:

Is there an outlier? _____ Recalculate the mean.

Example #3:The following data represents the math scores of a group of friends:

Albert	Beth	Cindy	David	Emily	Frank	Gary	Helen	Ida	Jeremy
96%	92%	85%	81%	37%	88%	95%	84%	96%	78%

Calculate the mean:

Is there an outlier? ______ Recalculate the mean.