Statistical Vocabulary \#1

Statistics is a collection of methods for planning experiments, obtaining data, and then organizing, presenting, analyzing, interpreting, and drawing conclusions based on the data.

Definitions

- A population is the complete collection of all elements (scores, people, measurements, and so on) to be studied.
- A sample is a sub-collection of elements drawn from the population.
- A parameter is a numerical measurement describing some characteristic of a population.
- A statistic is a numerical measurement describing some characteristic of a sample.
- In an observational study, we observe and measure specific characteristics, but we don't attempt to manipulate or modify the subjects being studied.
- In an experiment, we apply some treatment and then proceed to observe its effects on the subjects.

Determine whether each of the following is an observational study or an experiment.

1. Different brands of cigarettes are measured for tar, nicotine, and carbon monoxide.
2. People who smoke are asked to halve the number of cigarettes consumed each day so that any effect on pulse rate can be measured. \qquad
3. In a PE class, the effect of exercise on blood pressure is studied by requiring that half of the students walk a mile each day while the other students run a mile each day.
4. The relationship between weights of bears and their lengths is studied by measuring bears that have been anesthetized.

Measures of Central Tendency

- A measure of central tendency is a value at the center or middle of a data set.

Example:
A. Listed below are the times (in years) that the first ten presidents survived after inauguration. Find the mean for this sample.

10	29	26	28	15	23	17	25	0	20

Median

$>$ The median of a set of scores is the middle value when the scores are arranged in order of increasing (or decreasing) magnitude.
$>\tilde{x}$

- Pronounced "x-tilde"

To find the median:

- Arrange the scores in order (increasing or decreasing)
- If the number of scores is odd, the median if the number that is located in the exact middle of the list.
- If the number of scores is even, the median is found by computing the mean of the two middle numbers.

Example:

a. The following values are the incomes (in thousands of dollars) that performers received for one rock concert. Find the median.

$>$ The mode of a data set is the score that occurs most frequently.	
$>M$	Represents mode
$>$ When two scores occur with the same greatest frequency, each one is a mode and the data set is bimodal.	
$>$ When more than two scores occur with the same greatest frequency, each is a mode and the data set is	
said to be multimodal.	
$>$ When no score is repeated, we say that there is no mode.	
$>$ To find the mode:	
\quad A Arrange the scores in order (increasing or decreasing)	
\quad Determine which score(s) has the greatest frequency	

Example:
b. Find the mode(s) of each data set.

1. $\begin{array}{lllllllllll}5 & 5 & 5 & 3 & 1 & 5 & 1 & 4 & 3 & 5\end{array}$
2. $\begin{array}{llllllllllllll} & 1 & 2 & 2 & 2 & 3 & 4 & 5 & 6 & 6 & 7 & 7 & 7 & 9\end{array}$
3. $\begin{array}{lllllllll}1 & 1 & 2 & 3 & 6 & 7 & 8 & 9 & 10\end{array}$

The Best Measure of Central Tendency

Comparison of Mean, Median, and Mode						
Average	Definition	How Common?	Existence	Every Score into Account?	Affected by Extreme Scores?	Advantages and Disadvantages
Mean	$\bar{x}=\frac{\sum x}{n}$	Most familiar "average"	Always exists	Yes	Yes	
Median	\tilde{x}	Commonly used	Always exists	No	No	
Mode	M	Sometimes used	May not exist or may be more than one mode	No	No	

Which is the best measure of central tendency for each situation?

- Determining the "average" cost of a house in a particular area \qquad
- Determining the "average" eye color in the school \qquad
- Determining the "average" test score \qquad

Practice:

For questions 1-2 find the mean, median, and mode.

1. The ages (in years) of students taking a Calculus III class in college.

17	20	21	18	20	20	20	18	19	19
20	19	21	20	18	20	20	19	18	19

2. Digits selected in the lowa Pick Three lottery:
168
695
2
5 0 99

Practice:

For questions 3 find the mean, median, and mode of each sample, and then compare the two sets of results.
3. Samples of the ages (in years) of student cars and faculty/staff cars at a particular college.

Students	10	4	5	2	9	7	8	8	16	4	13	12

Faculty/Staff	7	10	4	13	23	2	7	6	6	3	9	4

a. Mr. Clark decides to trade in his 23 year old car and buy a brand new car. How does this effect the results?

Outlier

- A value that "lies outside" (is much smaller or larger than) most of the other values in the set of data.

Example \#1: 25, 29, 3, 32, 85, 33, 27, 28 Outlier(s): \qquad

How do Outliers affect the measures of central tendency?

Example \#2: A new coach has been working with the long jump team this month, and the athletes' performance has changed. Here are the results:

Athlete	Augustus	Tom	June	Carol	Bob	Sam
Result	+0.15 m	+0.11 m	+0.06 m	+0.05 m	+0.12 m	-0.56 m

Find the mean of the data set:

Is there an outlier? \qquad
Recalculate the mean.

Example \#3:The following data represents the math scores of a group of friends:

Albert	Beth	Cindy	David	Emily	Frank	Gary	Helen	Ida	Jeremy
96%	92%	85%	81%	37%	88%	95%	84%	96%	78%

Calculate the mean:

Is there an outlier? \qquad
Recalculate the mean.

