Measures of Variation or Dispersion

- It is used to tell how far on average any data point is from the mean.
- The smaller the standard deviation, the closer the scores are on average to the mean.
- When the standard deviation is large, the scores are more widely spread out on average from the mean.

Examples:

1. 24 students took a 100 point test. 12 of the students scored 83 and 12 of the students scored 77 .
a. What's the mean? \qquad
b. What is the standard deviation? \qquad
(the difference or distance between each score and the mean)?
2. 24 students took a 100 point test. 12 of the students scored a 95 and 12 of the students scored a 65 .
a. What is the mean? \qquad
b. What is the standard deviation? \qquad

CALCULATING STANDARD DEVIATION

Calculate the standard deviation of the following test data by hand. Use the chart below to record the steps.

Test	45	70	85	38	23	94	65	51	80	49
Scores	4									

Mean: \qquad $n:$ \qquad

Number	Difference from the mean	(Difference from the mean)
	Sum of (Difference from the mean)	

- Sum of (Difference from the Mean) ${ }^{2}$ divided by degrees of freedom ($n-1$): \qquad
\rightarrow This is called variance.

$$
\frac{\sum(x-\bar{x})^{2}}{(n-1)}=
$$

- Final Step:

Standard deviation = square root of what you just calculated (variance).

Standard deviation $=$
$\sqrt{\frac{\sum(x-\bar{x})^{2}}{(n-1)}}=$ \qquad

For problems 1 and 2: calculate the standard deviation of the following test data by hand. Use the chart below to record the steps.
1.

Number	Difference from the mean	(Difference from the mean)
	Sum of (Difference from the mean)	

A. Mean: \qquad B. n : \qquad
C. Sum of (Difference from the Mean) ${ }^{2}$ divided by $(n-1)$: \qquad $=$ variance.
D. Standard deviation = square root of variance. Standard deviation= \qquad .

The data set below lists the calories burned in an hour by 10 members at Kosama.

500	430	380	535	421
488	364	454	508	472

2.

A. Mean: \qquad B. n : \qquad
C. Sum of (Difference from the Mean) ${ }^{2}$ divided by $(n-1)$: \qquad $=$ variance.
D. Standard deviation = square root of variance. Standard deviation $=$ \qquad -

The data set below lists the MAP scores of 10 freshmen students.

234	241	219	252	260
238	256	244	239	247

