Unit 2 (1.3) Exponents and Logarithms Notes

Warm-Up:

1.
$$64 = 8^{x-6}$$
 2. $100^x = 100,000$

Evaluate each expression. The first two have been completed for you.

a. WhatPower ₂ (8) = 3	b. WhatPower ₃ (9) = 2
c. WhatPower ₆ (36) =	d. WhatPower ₂ (32) =
e. WhatPower ₁₀ (1000) =	f. WhatPower ₁₀ (1,000,000) =
g. WhatPower ₁₀₀ (1,000,000) =	h. WhatPower ₄ (64) =
i. WhatPower ₂ (64) =	j. WhatPower ₉ (3) =
k. WhatPower ₅ ($\sqrt{5}$) =	I. WhatPower $\frac{1}{2}\left(\frac{1}{8}\right) = $
m. WhatPower ₄₂ (1) =	

•Logarithms help get the variable out of the exponent. Logs are inverses of exponents. $y = b^x$ (exponential form) is equivalent to: $log_b(y) = x$ (logarithmic form) Example: $2^3 = 8$ is equivalent to $log_2 8 = 3$

Convert the following into exponential form:

1.
$$log_5 15625 = 6$$
 2. $log_{\frac{1}{2}} \left(\frac{1}{16}\right) = 4$ 3. $log_3 27 = 3$

Convert the following into logarithmic form:

4.
$$7^3 = 343$$
 5. $\frac{1}{2}^{-5} = 32$ 6. $4^{-3} = \frac{1}{64}$

What is the purpose of being able to change from one form to the other?

$$log_3 x = -5$$
 $10^x = 100,000$

Practice:

Put the following in exponential form and solve.

1.
$$log_2 64 = x$$
 2. $log_3 81 = x$ 3. $log_4 \left(\frac{1}{16}\right) = x$

4. $log_5 x = -2$	5. $log_{49}x = \frac{1}{2}$	6. $log_{16}64 = x$
-------------------	------------------------------	---------------------

7.
$$log_4(5x + 1) = 2$$

8. $log_6(9x) = 3$
9. $log_2(2x - 4) = 3$

Evaluate.

• $\log_9(729) =$ _____

• $\log_3\left(\frac{1}{243}\right) =$

• $\log_2(-16) =$

• $\log_{512}(8) =$

- $\log_4(4096) =$ _____
- $\log_{121}(11) =$ _____
- $\log_{37}(1) =$

• $\log_{-5}(-78125) =$ _____

Warm-up:

Solve for x.

1. $log_4(2x - 4) = 3$ 2. $4^{x+5} = 16^x$

Properties of Logarithms: *These properties only work if the bases are the same.*		
Property of Equality	Product Property	
$log_b x = log_b y$	$log_bmn = log_bm + log_bn$	
(if $b > 0$, $b \neq 1$ then $x = y$)	(if m, n, b are positive, $b \neq 1$)	
Example: $log_7 x = log_7 3$	Example: $log_7 12 + log_7 3 = log_7 (12 \cdot 3)$	
x = 3	log_736	
Quotient Property	Power Property	
$log_b\left(\frac{m}{n}\right) = log_bm - log_bn$	$log_b m^p = plog_b m$	
(if m, n, b are positive, $b \neq 1$)	(if m, b are positive, $b \neq 1$ and p is a real number)	
Example: $log_7 12 - log_7 3 = log_7(\frac{12}{2})$	Examples: $log_7 2^3 = 3log_7 2$	
log_74	$2log_76 = log_736$	

Practice:

1. $log_64x + log_63 = log_684$

2. $log_2(x+2) - log_2(x-4) = 2$

3. $log_4 x + log_4 8 = 4$	4. $log_{11}6 + 3log_{11}2 = log_{11}3x$
5. $5log_92 = log_94x$	6. $3log_54 - log_52 = log_516x$
7. $log_6 4x - log_6 3 = 2$	8. $4log_{14}3 = 2log_{14}x$

9. $log_2 5 + log_2 4x = 7$	10. $log_5 x + log_5 (x + 4) = log_5 32$
11. $log_{12}6x - log_{12}(x+3) = log_{12}4$	12. $3log_3 = log_3(4x - 11)$
13. $6\log_4 2 - \log_4 \left(\frac{1}{2}x + 1\right) = 4\log_4 2$	14. $2log_6 12 + log_6 x = 4$