1. How do you determine the number of terms a polynomial has?
2. How do you determine the degree of a polynomial?
3. Write a trinomial with a degree of 5 .
4. State whether the following are polynomials in one variable. If they are not, explain why.
a. $3 x^{3}-x^{\frac{1}{2}}+17$
b. $7-x$
c. $a^{2}+2 a b+b^{2}$
d. $6 x^{4}+3 x^{3}-4 x+3$
e. $c^{2}+c+\frac{1}{c}$

Simplify the following.
Then put the resulting polynomial in descending order, state its degree and leading coefficient, and classify the polynomial by the number of terms.

5. $\left(3 x^{2}-x+2\right)+\left(x^{2}+4 x-9\right)$	Circle one of the following: Monomial Binomial Degree: \qquad Leading Coefficient: \qquad	Trinomial	Polynomial
6. $\left(16+9 r^{2}+6 r\right)-\left(-7 r+8 r^{2}-10\right)$	Circle one of the following: Monomial Binomial Degree: \qquad Leading Coefficient: \qquad	Trinomial	Polynomial
7. $\left(x+4 x^{3}+5+3 x^{2}\right)+\left(7-4 x+3 x^{3}\right)$	Circle one of the following: Monomial Binomial Degree: \qquad Leading Coefficient: \qquad	Trinomial	Polynomial
8. $\left(5 y^{4}-2-6 y\right)-\left(6 y^{4}+-4 y^{2}+3 y^{3}\right)$	Circle one of the following: Monomial Binomial Degree: \qquad Leading Coefficient: \qquad	Trinomial	Polynomial
9. $\left(2 x+4+3 x^{2}\right)(x-6)$	Circle one of the following: Monomial Binomial Degree: \qquad Leading Coefficient: \qquad	Trinomial	Polynomial
10. $\left(2 x^{2}+3 x-7\right)\left(3 x^{2}-4 x-5\right)$	Circle one of the following: Monomial Binomial Degree: \qquad Leading Coefficient: \qquad	Trinomial	Polynomial

