Unit 2 (2.4) Inverses Notes

Finding Inverses:

The domain of a relation becomes the range of the inverse, and the range of a relation becomes the domain of the inverse.

To put it more simply: \qquad
The graph of the original relation will be reflected over \qquad
Steps:

1. Replace $f(x)$ with y .
2. Switch x and y .
3. Solve for y.
4. Replace y with $f^{-1}(x)$.

Examples:

Find the Inverse 3. $f(x)=\frac{2 x+12}{6}$	Graph both $f(x)$ and its inverse
Find the Inverse 4. $f(x)=-\frac{3}{2} x+9$	Graph both $f(x)$ and its inverse

Finding the inverse of a non-linear equation:

1. Find $b^{-1}(x): b(x)=\sqrt{2 x-4}$

Graph both $\boldsymbol{b}(\boldsymbol{x})$ and its inverse

2. Find $e^{-1}(x): e(x)=\sqrt{x-3}+1$	Graph both $e(x)$ and its inverse
3. Find $c^{-1}(x): c(x)=(x+4)^{2}-2$	Graph both $\boldsymbol{c}(\boldsymbol{x})$ and its inverse
4. Find $f^{-1}(x): f(x)=(x-3)^{2}+5$	Graph both $f(x)$ and its inverse

If you don't have a graph, how do you know you solved for the inverse correctly?
Proving $f(x)$ and $f^{-1}(x)$ are inverses.
Check to see if the compositions of $f(x)$ and $f^{-1}(x)$ is the identity function. $(y=x)$

$$
f\left(f^{-1}(x)\right)=x \quad \& \quad f^{-1}(f(x))=x
$$

PROVE that the following are inverses by using compositions.

1. $f(x)=\frac{3}{4} x-6$ and $g(x)=\frac{4}{3} x+8$
2. $f(x)=2 x^{2}-1$ and $g(x)=\sqrt{\frac{x+1}{2}}$
3. $f(x)=\frac{x^{2}+3}{2}$ and $g(x)=\sqrt{2 x-3}$
