Polynomial Synthetic Division Notes

Warm-up:
Factor, then solve:

1. $3 x^{2}-14 x+8=0$
2. $25 x^{2}-1=0$

Given the zeros, write a polynomial function of least degree that has real coefficients and a leading coefficient of 1.
3. $x=3, x=-6$
4. $x=-1+7 i$

Divide using long division or tabular division:

$$
x + 4 \longdiv { 3 x ^ { 3 } + 4 x ^ { 2 } - 3 0 x + 8 }
$$

Synthetic Division - another method (quicker) for dividing, BUT it has it's limitations
Limitations:
Ex: (from the warm-up):

$$
x + 4 \longdiv { 3 x ^ { 3 } + 4 x ^ { 2 } - 3 0 x + 8 }
$$

Use synthetic, long, or tabular division to find the roots.

Examples:

1. $\frac{2 x^{3}-10 x^{2}+9 x+15}{x-3}$
2. $\frac{x^{3}-3 x^{2}-7 x+6}{x+2}$
3. $\frac{2 x^{4}-x^{3}-4 x^{2}-8}{x-2}$
4. $\frac{3 x^{3}-81 x+30}{x-5}$
5. $\frac{6 x^{3}+7 x^{2}+x+1}{2 x+3}$
6. $\frac{x^{3}+2 x^{2}-4 x+1}{x^{2}+x-2}$

When is it best to use:	
Long Division	

