Solve.

1. $5^{x-2} * 5^{3 x-7}=125$
2. $\frac{9^{x-8}}{27^{-2}}=81^{-6 x+4}$

Solving using logarithms

METHOD 1

Example 1: \quad Solve $\mathbf{2}^{\boldsymbol{x}}=\mathbf{1 0}$

Example 2: \quad Solve $\mathbf{8}^{\boldsymbol{x + 6}}=\mathbf{1 1}$

Now you TRY!

1. $3^{x}=11$
2. $3^{x+2}=15$
3. $3^{2 x}=20$

What happens if you have a variable on both sides?!
Solve.
$4^{x-3}=7^{2 x}$

Practice: Solve using any method.

1. $4^{x}=53$
2. $15=22^{x}$
3. $3^{7 x}=11$
4. $8^{x-4}=9$
5. $41=12^{4 x+3}$
6. $20^{x^{2}}=70$
7. $2.1^{5 x}=9.32$
8. $6^{x+5}=2^{x}$
9. $7^{2 x-1}=5^{x+1}$
10. $80=7^{x}$
11. $4.4^{x}=8.8$
12. $9=10^{-2 x}$
13. $2^{3 x-5}=17$
14. $52=4^{-x+5}$
15. $13=8^{4 x^{2}}$
16. $7^{x}=3^{x+9}$
17. $2^{4 x-1}=9^{x}$
18. $15^{4 x-3}=23^{9 x+1}$
