Unit 2 (1.5)

Inverse Property of Exponents and Logarithms:

Solve.

1.
$$5^{x-2} * 5^{3x-7} = 125$$

2. $\frac{9^{x-8}}{27^{-2}} = 81^{-6x+4}$

Solving using logarithms

METHOD 1		
Example 1:	Solve 2 ^{<i>x</i>} = 10	 Method 1 Steps: Using the property of equality, take the log of both sides. Use the properties of logs to move the x out of the exponent. Divide both sides by log. Isolate the variable by using basic solving skills. Simplify by using your calculator.

Example 2: **Solve** $8^{x+6} = 11$

Now you TRY!

1.
$$3^x = 11$$
 2. $3^{x+2} = 15$ 3. $3^{2x} = 20$

What happens if you have a variable on both sides?!

Solve. $4^{x-3} = 7^{2x}$ Practice: Solve using any method.

1. $4^x = 53$ 2. $15 = 22^x$ 3. $3^{7x} = 11$

4. $8^{x-4} = 9$	5. $41 = 12^{4x+3}$	6. $20^{x^2} = 70$
4. $8^{x-4} = 9$	5. $41 = 12^{4x+3}$	6. $20^{x^2} = 70$

7. $2 \cdot 1^{5x} = 9 \cdot 32$ 8. $6^{x+5} = 2^x$ 9. $7^{2x-1} = 5^{x+1}$

10. $80 = 7^x$ 11. $4 \cdot 4^x = 8 \cdot 8$ 12. $9 = 10^{-2x}$

13. $2^{3x-5} = 17$ 14. $52 = 4^{-x+5}$

16. $7^x = 3^{x+9}$ 17. $2^{4x-1} = 9^x$ 18. $15^{4x-3} = 23^{9x+1}$