Unit 2 (1.7) \quad Natural Logarithms and the Base e - Student Notes

Warm-Up: Use any method to solve

1. $64=8^{x-6}$
2. $7^{x}=54$
3. $9^{-x+3}=27^{x-3}$
4. $16^{2 x}=9^{3 x-5}$

EXAMPLE

Suppose you deposit $\$ 1000$ in an account paying 5% annual interest compounded continuously. Using the formula $y=P e^{r t}$, find:
a. the balance after 10 years.
b. How long it will take for the balance in your account to reach at least $\$ 1500$?

Base e

The base e is an irrational number much like π. It's numerical value is 2.71828 \qquad but it's much easier to use in its variable form (see button for e^{x} on your calculator). Natural base exponential functions, such as the equation in the above example, are used extensively in science to model quantities that grow and decay continuously, and in banking for continuously compounded interest.

Practice:

1. e^{2}
2. $e^{-1.3}$

The Natural Logarithm

The logarithm with base e is called the natural logarithm $\left(\log _{e} x\right)$, but is most often abbreviated $\ln x$.

- see button on calculator and try: $\ln 4$ and $\ln 0.05$

IMPORTANT: e^{x} and the $\ln x$ have the same properties as other exponents and logarithms

Property of Equality	Product Property
$\boldsymbol{l n} x=\ln y$	$\boldsymbol{l n}(\boldsymbol{c d})=\ln (c)+\ln (d)$
Example: $\begin{aligned} \ln (x-7) & =\ln 3 \\ x-7 & =3 \end{aligned}$	Example: $\ln 4+\ln x=\ln (4 x)$
$x=10$	
Quotient Property	Power Property
$\ln \left(\frac{c}{d}\right)=\ln (c)-\ln (d)$	$\boldsymbol{\operatorname { l n }}(\boldsymbol{m})^{\boldsymbol{p}}=\boldsymbol{p} * \boldsymbol{l n}(\boldsymbol{m})$
Example: $\quad \ln x-\ln 3=\ln \left(\frac{x}{3}\right)$	Examples: $\quad \ln 2^{x}=7$
	$x * \ln 2=7$
	$x=\frac{7}{\ln 2}$

1. Evaluate each expression or solve.
a. $e^{\ln 7}$
b. $\ln e^{4 x+3}$
c. $\ln (x-7)=2$
d. $\ln 7+\ln x=\ln 28$
e. $\ln (x+8)-\ln (7)=3$
f. $2 \ln x+\ln 4=\ln 100$
g. $4 e^{x+5}+7=35$
h. $2 e^{0.5 x}=26$
2. (the opening example) Suppose you deposit $\$ 1000$ in an account paying 5% annual interest compounded continuously. Using the formula $y=P e^{r t}$, find:
a. the balance after 25 years.
b. How long it will take for the balance in your account to reach at least $\$ 1500$?
3. If you deposit $\$ 2025$ in a savings account paying 3.2% interest compounded continuously, how much money will you have after 15 years? How long would it take you to triple your money?
