Unit 2 (1.7) Natural Logarithms and the Base *e* - Student Notes

Warm-Up: Use any method to solve

1.
$$64 = 8^{x-6}$$
 2. $7^x = 54$

 $3.9^{-x+3} = 27^{x-3}$

4.
$$16^{2x} = 9^{3x-5}$$

EXAMPLE

Suppose you deposit \$1000 in an account paying 5% annual interest compounded continuously. Using the formula $y = Pe^{rt}$, find:

a. the balance after 10 years.

b. How long it will take for the balance in your account to reach at least \$1500?

Base e

The base *e* is an irrational number much like π . It's numerical value is 2.71828....., but it's much easier to use in its variable form (see button for e^x on your calculator). **Natural base exponential functions**, such as the equation in the above example, are used extensively in science to model quantities that grow and decay continuously, and in banking for continuously compounded interest.

Practice:

1. e²

The logarithm with base e is called the natural logarithm ($log_e x$), but is most often abbreviated ln x.

• see button on calculator and try: ln4 and ln0.05

<u>IMPORTANT</u>: e^x and the ln x have the same properties as other exponents and logarithms

Property of Equality	Product Property
lnx = lny	ln(cd) = ln(c) + ln(d)
Example: $\ln(x-7) = \ln 3$ x-7 = 3 x = 10	Example: $ln4 + lnx = ln(4x)$
Quotient Property	Power Property
$ln\left(\frac{c}{d}\right) = ln(c) - ln(d)$	$ln(m)^p = p * ln(m)$
Example: $lnx - ln3 = ln(\frac{x}{3})$	Examples: $ln2^x = 7$ x * ln2 = 7
	$x = \frac{7}{\ln 2}$

- 1. Evaluate each expression or solve.
 - a. e^{ln7}

b. lne^{4x+3}

c. $\ln(x-7) = 2$ d. ln7 + lnx = ln28

e. $\ln(x+8) - \ln(7) = 3$ f. $2\ln x + \ln 4 = \ln 100$ g. $4e^{x+5} + 7 = 35$

- 2. (the opening example) Suppose you deposit \$1000 in an account paying 5% annual interest compounded continuously. Using the formula $y = Pe^{rt}$, find:
 - a. the balance after 25 years.

b. How long it will take for the balance in your account to reach at least \$1500?

3. If you deposit \$2025 in a savings account paying 3.2% interest compounded continuously, how much money will you have after 15 years? How long would it take you to triple your money?