Warm-Up:

1. Solve. $\ln (3 x+7)+\ln (6)=\ln (186)$
2. $\ln x+\ln 5 x=11$
3. $2 e^{x}-1=7$
4. Graph $y=3(1.3)^{x}$ and $y=3(0.3)^{x}$. What is the same? What is different?

Key Concept:
 $$
y=a\left(b^{x}\right)
$$

a represents the initial value
b represents the growth factor

If $a>0$ and $b>1$, the function represents exponential growth
If $a>0$ and $0<b<1$, the function represents exponential decay

Answer the following questions about each equation.

1. Growth or Decay?
2. What is the initial value, the y-intercept?
3. Draw a rough sketch of the following equations, then state the function's domain and range.
4. $y=\left(\frac{1}{5}\right)^{x}$
5. $y=3(4)^{x}$
6. $y=\frac{1}{2}(1.2)^{x}$

Writing equations from Word Problems.

Use the following formulas to write an exponential equation for the scenarios below.

$$
\begin{array}{ll}
y=a(1 \pm r)^{t} & \text { for exponential growth or decay } \\
y=P e^{r t} & \text { for compounding interest continuously } \\
y=P\left(1+\frac{r}{n}\right)^{n t} & \text { for compounding interest any other way }
\end{array}
$$

\qquad
\qquad
\qquad

1. Emily plans to invest $\$ 500$ at 8.5% interest, compounded continuously. How long will it take for her money to triple?
2. For Dave to buy a new car comparably equipped to the one he bought years ago would cost $\$ 12,500$. Since Dave bought the car, the inflation rate for cars like his has been at an average annual rate of 5.2%. If Dave originally paid $\$ 8400$ for the car, how long ago did he buy it?
3. A cup of coffee contains 130 milligrams of caffeine. If caffeine is eliminated from the body at a rate of 11% per hour, how long will it take for half of this caffeine to be eliminated from a person's body?
4. In 1910, the population of the Quad Cities was 120,000 . Since then, the population has increased by exactly 1.5% per year. If the population continues to grow at this rate, what will the population be in 2020?
5. Ms. Boehl invested $\$ 8500$ at 6%, compounded monthly.
a. How much will she have after 5 years?
b. When will she have $\$ 15,000$?
6. How long will it take Mr. Belby to double his money if he deposits $\$ 3000$ in the bank where the interest is continuously compounded at a rate of 2.5% ?
7. Ms. Ver Heecke created a sculpture out of ice that weighs 2000 pounds. If the sculpture loses 3.5% of its mass each hour, after how many hours will it be half its weight?
8. Mr. Sacco is investing some money into a bank account for his little girl's college fund. If he deposits $\$ 15,000$ when she is born (2017) at 4.7% compounded weekly, when will the account reach $\$ 50,000$?
