\qquad
\qquad

1. Given the following equations, answer the questions that follow:
a. $y=2(x-7)^{2}-8$
b. $y=-2(x+5)(x-3)$

What form is this in?
What form is this in?

What is the vertex (no calc)?
What is the vertex?

What is the y-intercept?
What is the y-intercept?

What are the x-intercepts, if any?
What are the x-intercepts, if any (no calc)?
2. Solve.
a. $\sqrt{x-24}=\sqrt{x}-4$
b. $16 x^{2}-81=0$
3. Solve.
a. $5^{x+4}=49$
b. $\log _{4}(x+2)+\log _{4} 5=\log _{4} 70$
c. $\log _{2}(x-6)-\log _{2} 5=\log _{2} 3$
4. Simplify the following:
a. $\sqrt{108}$
b. $\sqrt{-150}$
c. $\sqrt{(-6)^{2}-4(-2)(-17)}$
5. Use the given factors to divide. Find the remaining roots.

$$
f(x)=x^{4}-6 x^{3}-96 x-256 ;(x-8) \text { and }(x+2)
$$

6. Perform the indicated operation. Write an equivalent expression in reduced form. Don't forget to list restrictions.
a. $\frac{\frac{x^{2}+7 x-60}{3 x^{2}-15 x}}{\frac{x^{2}+5 x-84}{x^{3}-7 x^{2}}}$
b. $\frac{8}{2 x-10}-\frac{10}{3 x-15}$
7. Given the picture, list the following:
a. Degree
b. End behaviors L:

R:
c. \#Relative Max
d. \#Relative Min
e. L.C. + or -
f. Give an example equation that could represent the graph

