\qquad
\qquad

1. Describe the transformations.
a. $y=-\frac{3}{4} \sqrt{x}-9$
b. $y=2(x-4)^{2}+15$
2. Find the value of each, if $f(x)=2 x^{2}-x+4$ and $g(x)=x-2$ and $h(x)=-4 x^{2}$
a. $g(f(3))$
b. $h(g(x))$
3. Use the relation graphed to the right to answer the following questions:
a. Is the relation a function?
b. State the domain for the relation.
c. State the range for the relation.
d. Graph the relation's inverse.
e. Is the inverse a function?
f. State the domain for the inverse.

g. State the range for the inverse.
4. Simplify.
a. $(7-3 i)(4 i+1)$
b. $\sqrt{-288}$
5. Prove the following equation has exactly one solution. $\sqrt{-3 x+10}=x$
6. I have a 4 by 9 by 14 inch box. I would like to increase each side by the same amount so that the new volume is 168 more than 7 times the original.
a. By how much do you need to increase each side?
b. What are the new dimensions?
7. Given the transformations, write the equations:
a. Quadratic
Vertical Dilation: 6
Horizontal Translation: -4
Reflection
b. Radical
Vertical Translation: -11
Vertical Dilation: 4/3
Horizontal Translation: 5
Equation:
Equation:
8. Solve.
a. $\quad \ln (6 x+1)=4$
b. $\log _{11} 5 x-\log _{11} 4=\log _{11} 10$
c. The car I bought for $\$ 32,000$ is losing 3% of its value every year. When will it be worth $\$ 25,000$?
