1. Find the inverse, then graph both.

Name: _____

 $f(x) = \sqrt{x+3} - 4$

 $f^{-1}(x) =$ _____

2. Is this a function?

What is the domain?

What is the range?

3. Simplify. Be sure to list restrictions.

$$\frac{3x}{x^2 + 8x + 12} + \frac{6}{4x + 8}$$

Answer:

Restrictions:

4. Given $x^4 - 5x^3 + 10x^2 - 30x + 24$ with factors of	of $(x - \frac{1}{2})$	4) and	(x - 1)	, find the roots.
--	------------------------	--------	---------	-------------------

Real roots: _____

Imaginary roots: _____

a.
$$\sqrt{-160}$$

b.
$$\sqrt{275}$$

- 6. Your parents started you a savings account when you were born. They deposited \$10,000 in an account that pays 2.1% annual interest, compounded monthly. Use $A = P\left(1 + \frac{r}{n}\right)^{nt}$.
- a. How much money did you have when you turned 18?

b. When did you have \$11,500?

Graph.

7.
$$f(x) = \sin 1/2(\theta - 90)$$

8.
$$f(x) = \frac{2}{3}|x+1| - 4$$

9.
$$f(x) = (x-4)^2 + 1$$

10.
$$f(x) = 2\cos\theta - 3$$

Solve by changing to the same base or by using log properties.

11.
$$2^{x+7} = 16^{x+2}$$

12.
$$\log_9(17x - 4) = 2$$